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Abstract. Modern financial practice depends heavily on mathematics and a correspondingly large theory has
grown up to meet this demand. This paper focuses on the use of matched asymptotic expansions in option
pricing; it presents illustrations of the approach in ‘plain vanilla’ option valuation, in valuation using a fast
mean-reverting-stochastic volatility model, and in a model for illiquid markets. A tentative framework for matched
asymptotic expansions applied directly to stochastic processes of diffusion type is also proposed.
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1. Preface

It is an honour to have been asked write the 2005 James Lighthill Memorial Paper, and I am
most grateful to the Editors of the Journal of Engineering Mathematics for their invitation.
When I was a graduate student Lighthill was one of a very small number of colossi of applied
mathematics in the UK and I was fortunate to hear a number of talks by him, given in his
characteristic style.

I have been asked to write on the subject of mathematical finance, an area in which as far
as I am aware Lighthill never worked, although he included a chapter on the subject in [1].
However, one of Lighthill’s best-known works is the book Introduction to Fourier Analysis and
Generalised Functions [2] which introduced many, many applied mathematicians to the idea of
the delta function as a limit of a sequence of ‘normal’ functions, for example parametrised
continuously by a parameter t which may be thought of as time; Lighthill developed the the-
ory of distributions within this framework. This idea sees a natural interpretation in finance,
where option prices in the standard Black–Scholes theory demonstrate just such a smoothing
effect on singular ‘payoff’ functions as time to expiry increases; indeed, the ‘Gamma’ of a
vanilla call or put option is exactly equal to the delta function at the expiry date. The theme
of this paper, therefore, is to illustrate how the smoothing idea can fruitfully be combined
with the techniques of matched asymptotic expansions in a variety of models in finance.

2. Introduction

The modern theory of finance, and especially of financial derivatives and financial engineer-
ing, depends absolutely on mathematics. Since the subject was kick-started by the work of
Black and Scholes [3] and Merton [4] there has been a very fruitful two-way technology
transfer between a range of areas of mathematics and the financial applications, the principal
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mathematical area being applied probability and in particular applied and numerical stochas-
tic analysis. However, the fact that the Black–Scholes methodology leads, via Itô calculus, to
partial differential equations, has led many physical applied mathematicians to contribute to
the field; this is the impetus behind, for example, the early text [5]. Much of this activity has
focused on obtaining exact solutions (which are particularly useful in the financial context) to
certain boundary value problems representing the prices of options, or on numerical methods.
The purpose of the current article is to illustrate the scope for another technique, asymptotic
analysis, to make a useful contribution to the solution of financial problems, with a particular
emphasis on the use of matched asymptotic expansions.

We begin in Section 3 with some simple examples of matched asymptotic expansions
applied to vanilla options close to their expiry date. In Section 4, we consider a nonlinear
model arising from the study of illiquid markets, and we contrast the smoothing of the pay-
off singularity by nonlinear diffusion with the effect of linear diffusion demonstrated in Sec-
tion 3. In Section 5, we turn to a model of fast mean-reverting stochastic volatility and we
show how to construct the boundary layer near expiry for European options. Finally in Sec-
tion 6, we speculate on the possibility of applying the methodology of matched asymptotic
expansions directly to stochastic processes, without going via the associated Kolmogorov par-
tial differential equations.

Before proceeding, we recall the standard Black–Scholes formulation of derivatives pricing
(see [5]). We consider options on an asset whose price St is modelled as a function1 of time
t by the stochastic differential equation

dSt

St

=µdt +σ dWt,

in which dWt is the increment of a standard Brownian Motion and µ and σ are, respectively,
the drift and volatility of the asset, taken to be constant, except in Section 5 where σ is also
taken to be stochastic. Given an option whose price V (S, t) depends only on S and t , appli-
cation of Itô’s formula to the evolution of a hedged portfolio �=V −�S, consisting of one
option and −� of the asset, shows that the risk in the option is perfectly correlated with that
of the asset and that the choice

�= ∂V

∂S

renders the portfolio instantaneously risk-free. In the absence of arbitrage and transaction
costs, the portfolio must then earn the risk-free rate r, also taken to be constant, so that
d�= r�dt ; in the absence of dividends this leads to the Black–Scholes equation

∂V

∂t
+ 1

2
σ 2S2 ∂V 2

∂S2
+ rS

∂V

∂S
− rV =0.

In the simplest cases this backward parabolic equation is to be solved with a terminal con-
dition V (S,T )=P(S) where P(S) is the payoff received at the expiry date t =T , and in the
absence of barriers S ranges from 0 to ∞. The simplest (‘plain vanilla’) options are call and
put options, whose payoffs are max(S −K,0) and max(K −S,0) respectively; they represent
the terminal value of an option to buy (call) or sell (put) the asset at time T for the fixed
price K, called the strike price.

An alternative view of the hedging strategy is that it entails pricing with respect to a
probability measure Q that is risk-neutral, rather than the objective (observed) measure P

1We include the customary subscript t on variables such as St when we wish to emphasise the time-
evolution of the process. In other contexts it may be omitted.
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associated with the stochastic differential equation for the asset price cited above. That is, for
pricing purposes, the asset is assumed to follow

dSt

St

= r dt +σ dWt,

where r is the risk-free rate, and then the value of the option is

V (St , t)=EQ[P(ST )|St ].

By the Feynman-Kac formulas, this expectation is equivalent to the solution of the Black–
Scholes equation.

As an aside, we comment that in practice the hedging strategy above is impractical and in
particular it is impossible to hedge continuously in time: even if the Wiener process were an
exact description of asset prices rather than a good approximation, it would still be impossi-
ble to trade either instantaneously or at each t . For this reason the hedge parameter termed
Gamma,

� = ∂2V

∂S2
,

is of enormous practical importance as it is a measure of the risk incurred in rehedging at
non-infinitesimal time intervals. To see this, suppose that a portfolio �=V −�tS, where �t =
∂V/∂S evaluated at (St , t), is perfectly hedged at time t , and that no trading takes place over
the interval (t, t +δt). Using Taylor’s theorem, the change in the portfolio over this interval is
δ�=δV −�tδS which, in the infinitesimal limit where δt becomes dt , is equal to the risk-free
return r�dt . Over the non-infinitesimal interval the hedging error (the difference between the
return on the portfolio and the risk-free rate) is

δ�−�
(
erδt −1

)= ∂V

∂t
δt + 1

2
∂2V

∂S2
δS2 − r

(
V − ∂V

∂S
δS

)
δt +o(δt)

= 1
2
σ 2S2

t

(
δW 2 − δt

) ∂2V

∂S2
+o(δt)

where we have used the Black–Scholes equation and the fact to this order δS2 = σ 2S2δW 2,
the random variable δW , whose distribution is N(0, δt), being the small change in the
Wiener process W . The error is seen to be proportional to the random variable δW 2 − δt ,
whose expectation is zero, multiplied by the option’s Gamma; the calculation is equivalent
to comparing tangent-plane and quadratic approximations to the value surface. For a call
option, we have

�(S,T )= d2

dS2
max(S −K,0)= δ(S −K)

where δ( · ) is the delta function, and the same for a put. Bearing in mind that for a call
option without dividends [�]S=∞

S=0 =1 for all t , so that
∫∞

0 �(S, t)dS =1, we see that as t →T

the Gamma of such an option is an approximation of the delta function in the spirit of [2].

3. Vanilla options near expiry

Our first example is the behaviour near expiry of a call option (or, by put-call parity, a put
option) in the standard Black–Scholes model. Here the payoff is P(S) = max(S − K,0) and
there is a famous explicit formula for the option value,

V (S, t)=SN(d+)−Ke−r(T −t)N(d−)
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where

d± =
log(S/K)+

(
r ± 1

2σ 2(T − t)
)

σ
√

T − t
,

and

N(d)= 1√
2π

∫ d

−∞
e−s2/2 ds

is the standard Normal cumulative density function. For small time, we can derive an approx-
imation to this formula as follows.

First we make some preliminary scalings: we measure time backwards from expiry and
scale it with σ 2, writing t =T − t ′/σ 2. The Black–Scholes equation becomes

∂V

∂t ′
= 1

2
S2 ∂2V

∂S2
+αS

∂V

∂S
−αV,

where α = r/σ 2 is dimensionless (at this stage, V and S are still dimensional).
Now suppose that α =O(1), but that scaled time is small, so that

t ′ = ε2τ

where 0<ε �1. The Black–Scholes equation is now

1
ε2

∂V

∂τ
= 1

2
S2 ∂2V

∂S2
+αS

∂V

∂S
−αV.

If the spot is far from the strike, we have a regular outer expansion

V (S, τ)∼V0(S, τ )+ ε2V1(S, τ )+· · ·
where

∂V0

∂τ
=0,

∂V1

∂τ
=α

(
S

∂V0

∂S
−V0

)

and so on, which with the final condition gives

V0 + ε2V1 =
{

S −K(1− ε2ατ) S −K � εK, far above the strike,

0 K −S � εK, far below the strike.

This is just the first two terms in the small time expansion (in unscaled variables) of the func-
tion

{
S −Ke−r(T −t) S >Ke−r(T −t),

0 S <Ke−r(T −t),

whose components are the value of the forward contract in which the option holder is com-
pelled to buy the asset, corresponding to certain exercise, and zero, corresponding to no exer-
cise.

However, as remarked earlier we expect large Gamma near the strike, and hence the
second S-derivative term cannot be ignored. We deal with this by rescaling near the strike,
introducing an inner variable

S =K(1+ εx),
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and at the same time rescaling

V (S, τ)= εKv(x, τ ).

The Black–Scholes equation becomes the non-dimensional equation

1
ε2

∂v

∂τ
= 1

2ε2
(1+ εx)2 ∂2v

∂x2
+ α

ε
(1+ εx)

∂v

∂x
−αv,

and the payoff is

v(x,0)= ε max(x,0).

Having calculated the solution to this inner problem, we will match it with the outer solution.
We now expand

v(x, τ ; ε)∼v0(x, τ )+ εv1(x, τ )+O(ε2).

Collecting together terms of O(1), the problem for v0 is

∂v0

∂τ
= 1

2
∂2v0

∂x2
, v0(x,0)=max(x,0).

The conditions at x =±∞ for this equation are, consistently with the payoff,

v(x, τ )∼x, x →+∞, v(x, τ )→0, x →−∞.

They can also be obtained by matching, using the Van Dyke rule. This is accomplished by
first writing the one-term outer expansion V0(S, τ ) in terms of the inner variables and then
expanding to one term in ε; the resulting expression is the large-x behaviour of the one-term
inner expansion v0(x, τ ).

This inner problem is much simpler than the original problem, and it has a similarity solu-
tion

v0(x, τ )=√
τf (x/

√
τ)

where, with x/
√

τ = ξ ,

f ′′ + ξf ′ −f =0,

and with the boundary conditions

f →0 as ξ →−∞, f ∼ ξ as ξ →∞.

The solution is readily found (it is convenient to differentiate the equation for f first) to
be

v0(x, τ )=xN(x/
√

τ)+√
τ n(x/

√
τ)

where N(·) is as above and n(·) is its derivative, e−x2/2/
√

2π .
The approximation just found is valid in the inner region, while in the outer region

we have the outer expansion found earlier. In more complicated problems, one can often
find a uniformly valid expansion, holding in both inner and outer regions, by calculating
‘outer + inner − common’, in which ‘outer’ and ‘inner’ are the expansions already found
and ‘common’ is the intermediate limiting behaviour of these expansions used in matching
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(i.e, the large-x behaviour of the inner expansion or the small |S −K| behaviour of the outer
expansion). In our case the outer expansion is so simple that it and the common expansion
coincide, and so the inner expansion is in fact uniformly valid and can be used as an approx-
imation for all S and small t ′. In these original variables, this expression is

V (S, t)∼ (S −K)N

(
S/K −1

σ
√

T − t

)
+σ

√
T − tK n

(
S/K −1

σ
√

T − t

)
.

Note that the parameter ε, which is artificial, does not appear in this expression.
It is not hard to proceed further, to find the two-term inner expansion v0 +εv1. The prob-

lem for v1 is

∂v1

∂τ
− 1

2
∂2v1

∂x2
=x

∂2v0

∂x2
+α

∂v0

∂x
, v1(x,0)=0.

As v0 satisfies the diffusion equation, a particular solution is readily found2 and, as it van-
ishes at τ =0 it is the solution we need:

v1(x, τ )=xτ
∂2v0

∂x2
+ 1

2
τ 2 ∂3v0

∂x3
+ατ

∂v0

∂x
= 1

2
x
√

τn(x/
√

τ)+ατN(x/
√

τ).

Furthermore, the two-term inner expansion εK(v0 +εv1) is again uniformly valid. In the orig-
inal variables, this expression now reads

V (S, t)∼ (S −K + r(T − t))N

(
S/K −1

σ
√

T − t

)
+σ

√
T − t(S +K)n

(
S/K −1

σ
√

T − t

)
.

It is also straightforward to show that these expressions agree to O(ε2) with the small-time
expansion of the exact solution.

The approximation is remarkably good for practical parameter values, as shown by the
example in Figure 1. Even with a time to expiry of 1 year, for which with σ = 0·3 we have
σ 2T = 0·09, the maximum relative pricing error is about 2·5%; furthermore, the approximate
expression can be differentiated to calculate the ‘Greeks’ (the industry term for �, � and
other partial derivatives of the option price, needed for hedging) as well as the price itself.

As a further test of the accuracy of the approximation, we calculate the error divided
by K(e−r(T −t) − (1− r(T − t))) and, as shown in Figure 2, this is always bounded and tends
to 1 as S → ∞; one expects the errors associated with approximating the discounting to be
O((r(T − t))2) which is small for realistic values, and the figure confirms that the errors asso-
ciated with the second derivative (volatility) term are not significantly bigger than those aris-
ing from approximate discounting.

In this particular example, the outer expansion is simply the outer expansion of the inner
problem and the error incurred in simply using the inner expansion is, in fact, exponentially
small in σ 2(T − t); in effect, the inner solution is an expansion of the exact solution in terms
of this quantity. If the payoff had been more complicated then the outer expansion would
have been non-trivial, and another example in which the method yields non-trivial results is
described in the following section. For more complicated illustrations of the potential of the
method in a Black–Scholes setting; see [6].

2We use the following: (i) if uτ − 1
2 uxx = 0 and vτ − 1

2 vxx =u, then a particular solution is τu; (ii) if u

is as above and vτ − 1
2 vxx =xu, then a particular solution is v =xτu+ 1

2 τ 2ux ; (iii) N ′′(ξ)+ ξN ′(ξ)=0.



Matched asymptotic expansions in financial engineering 391

0 0.5 1 1.5 2

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Moneyness S/K

E
rr

or
 r

el
at

iv
e 

to
 A

T
M

 p
ric

e

T = 1
T = 0.25

Figure 1. Approximate call value minus exact value,
scaled with the at-the-money value, as a function of
moneyness S/K. Time to expiry one year and 0·25
year. Volatility is σ =0·3, r =0·05.
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Figure 2. Approximate call value minus exact value,
scaled with the discounting error, as a function of
moneyness S/K. Time to expiry one year and 0·25
year. Volatility is σ =0·3, r =0·05.

3.1. CEV models

The methodology above can be applied to the constant-elasticity-of-variance (CEV) model in
which the Black–Scholes equation is replaced by

∂V

∂t
+ 1

2
σ 2S2

0

(
S

S0

)γ
∂2V

∂S2
+ rS

∂V

∂S
− rV =0.

The difference from the previous model is that the volatility is now S-dependent for γ �= 2
(the model is used to represent a ‘leverage’ effect whereby the impact of a given stochastic
change dWt is assumed to be greater when the asset price is small than when it is large, and
γ is thus taken to be less than the Black–Scholes value of 2). The parameters S0 and σ are
not independent, but writing the equation in this form allows one to compare option prices
with the same volatility at a given price level; for example, choosing S0 = K gives the same
at-the-money volatility for options with strike K as γ varies.

It is now much less straightforward to calculate explicit solutions, but the asymptotic pro-
cedure is virtually the same as for the case γ =2, the Black–Scholes model. Indeed, the outer
expansion is unchanged, while with the scalings previously used, the inner equation becomes

∂v

∂τ
= 1

2
κ2(1+ εx)γ

∂2v

∂x2
+ εα(1+ εx)

∂v

∂x
− ε2αv,

where κ2 = (S0/K)2−γ , with the same payoff as before. If we rescale time by setting τ =τγ /κ2

and expand to two orders in ε, we recover precisely the previous problem for v0, so the solu-
tion is the same but written in terms of the new time variable τγ . The equation for v1 is

∂v1

τγ

− 1
2

∂2v1

∂x2
= 1

2
γ x

∂2v0

∂x2
+αγ τγ

∂v0

∂x
, v1(x,0)=0.

where αγ = α/κ2 (note that ατ = αγ τγ ). We can, therefore, easily adapt the earlier result to
write down the inner solution (which is the uniformly valid expansion to this order) as

v0 + εv1 = (x + εατ)N(κx/
√

τ)+κ
√

τ(1+ εγ x/4)n(κx/
√

τ),
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Figure 3. Approximate CEV call value minus numerically calculated value, scaled with the at-the-money numerical
value, as a function of moneyness S/K. Time to expiry 0·25 year. At-the-money volatility is 0·3 for all options and
r =0·05.

which reduces to the previous expression when γ = 2. In original variables, we have the
approximation

V (S, t)∼ (S −K + r(T − t)
)
N

(
κ(S/K −1)

σ
√

T − t

)
+κσ

√
T − t

(
γ S + (4−γ )K

4

)
n

(
κ(S/K −1)

σ
√

T − t

)
.

The accuracy of the approximation is illustrated in Figure 3, which compares the error rela-
tive to the at-the-money option value for three different values of γ . The ‘true’ value was cal-
culated numerically by an explicit finite difference scheme. The approximation is even better
for γ <2 than it is for the Black–Scholes case γ =2, and appears to improve as γ decreases.

4. Vanilla options in an illiquid market

The standard assumptions of the Black–Scholes model include that of perfect liquidity: it is
possible to trade an arbitrary amount of the asset at the price St without incurring transac-
tion costs and without changing the price by trading. In practice this is simply not true, and
in this section we consider an aspect of a model for the effects of illiquidity.

Illiquidity is manifest in three forms in most markets. First, there is a difference, called the
bid-offer spread, between the prices for buying and selling even a small amount of the asset.
Second, the price paid for trading the asset depends on the amount traded; for example, a
trader wishing to buy a large amount of the asset will have to pay a price per unit of the
asset that increases with the amount traded, because there is only a limited amount on offer
at the lowest offer price (there are usually offers to sell at higher prices as well). This we term
the liquidity cost. Third, the action of trading a large amount may itself move the asset price
independently of the effect of other random innovations due to external news and the effect
of smaller trades. This is termed market impact.

In this section we assume that the bid-offer spread is small and we focus on the effect
of liquidity cost and market impact. These have been considered by a number of authors
(see [7–12] and references therein), and the common thread is that where a ‘Black–Scholes
equation’ can be formulated as a result of a continuous-time trading strategy or a continuous-
time approximation to a discrete-time strategy, it is nonlinear (the precise form of the nonlin-
earity depends on the model used). This is not surprising as whenever costs of any sort are
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incurred, the total value of two positions held separately is in general distinct from the value
of the net position, an extreme example being that of a trader who is both long (has bought)
and short (has sold) the same contract and whose net exposure is therefore precisely zero and
so does not need to be hedged: hedging the two positions separately incurs two sets of costs
and thus results in long and short prices whose difference is not zero.

Our interest here is how the nonlinearity affects the valuation of a call or put option near
expiry, as in Section 3. As a representative of the class of models used we consider that of [8].
In this model, the price paid to trade a number N of the asset is SteλN , where St is the asset
price before the trade and λ > 0 is a parameter measuring the liquidity of the market; it is
always small in practice, but markets with relatively small λ are more liquid than those with
relatively large λ. If N <0, representing a sale, the price received is less than St , while if N >0
the price paid to buy is greater than St . The market impact is represented by assuming that,
after the trade, the asset price moves to SteβλN , where the parameter β measures the mar-
ket impact, β = 0 representing a trader whose impact on the market is negligible. While the
parameter λ is typically very small, β may be O(1).

With these dynamics superposed on the standard asset price random walk, it is shown
in [8] that the model possesses a continuous-time limit in which the value of an option satis-
fies the nonlinear equation

Vt + 1
2
σ 2S2VSS +λσ 2S2V 2

SS + 1
2
λ2β2σ 2S4V 3

SS + rSVS − rV =0

(in this section we consistently use subscripts for partial derivatives). Recall that the Gamma,
VSS , of this option is a delta-function at expiry; following [13], we show how the nonlinear
equation for V handles this singularity.

As λ is small, we construct a regular outer expansion

V (S, t;λ)∼V0(S, t)+λV1(S, t)+λ2V2(S, t)+O(λ3),

in which

LBSV0 =0, V0(S, T )=P(S),

(we anticipate that the payoff condition should be applied to this function; in this problem
the interest is in a small inner region near the strike),

LBSV1 =−σ 2S2V 2
0SS, V1(S, T )=0,

LBSV2 =−2σ 2S3V0SSV1SS − 1
2
β2σ 2S4V 3

0SS, V2(S, T )=0,

and so on, where LBS is the standard Black–Scholes differential operator. Successive terms
can be calculated in integral form with the aid of a Green’s function or, more likely, numeri-
cally (numerical comparisons showing excellent agreement are given in [8]). The expansion is
valid provided that higher-order terms remain smaller than lower-order ones, and breakdown
first occurs when the magnitudes of V0 and λV1 become comparable. This is for asset values
near the strike and for times near expiry, specifically (recalling the results of Section 3) for
|(S −K)/K|= O(λ) and σ 2(T − t)= O(λ2). We therefore rescale, writing σ 2(T − t)=λ2τ and
S =K(1+λx), and V (S, t)=λv(x, τ ). The leading order term in an expansion in powers of λ

in the inner region then satisfies

v0τ = 1
2
v0xx +v2

0xx + 1
2
β2v3

0xx, v0(x,0)=max(x,0).
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This problem is itself intractable but its small and large time behaviour can be calcu-
lated. The large-time behaviour is straightforward, as for large times the dominant term on
the right-hand side is 1

2v0xx , namely a linear diffusion term, and the asymptotic behaviour
is that of linear diffusion, matching with the inner limit of the outer solution as discussed in
Section 3. The short-time behaviour is, conversely, dominated by the balance between v0τ and
1
2β2v3

0xx
. We analyse this by first setting τ =ετ̄ , x =ε

1
2 x̄, v0(x, τ )=ε

1
2
√

2v̄(x̄, τ̄ )/β, where ε is
an artificial small parameter, to find

v̄τ̄ = v̄3
x̄x̄ + (

√
2/β)ε

1
2 v̄2

x̄x̄ + 1
2
εv̄x̄x̄ , v̄(x̄,0)= (β/

√
2)max(x̄,0).

By differentiating twice and making the substitution v̄x̄x̄ =u, the equation for v can be trans-
formed into one of a type familiar in nonlinear diffusion, namely

uτ̄ =
(
u3 + (

√
2/β)ε

1
2 u2 + 1

2εu
)

x̄x̄
, u(x̄,0)= (β/

√
2)δ(x̄).

The leading order behaviour as τ →0 is described by the solution of

u0τ̄ =
(
u3

0

)

x̄x̄
, u0(x̄,0)= (β/

√
2)δ(x̄),

and this is given by the Barenblatt–Pattle similarity solution

u0(x̄, τ̄ )=

⎧
⎪⎨

⎪⎩

1
√

12τ̄
1
2

(
c2τ̄

1
2 − x̄2

) 1
2
, |x̄|<cτ̄

1
4 ,

0 |x̄|>cτ̄
1
4 ,

where c2 = 2
√

6β/π . This solution, which is integrated twice to recover the original option
value function, has compact support and indicates, in effect, that for short times near expiry,
the option value is equal to the payoff (discounting takes effect at higher order) except in the

sharply defined small region |S −K|<Kλc
(
σ 2(T − t)

) 1
4 ; in the linear diffusion case, by con-

trast, the region where the option value is non-trivial merges smoothly into the outer region.
Still following [13], it is possible to push the analysis a little further by considering the

transitions near x̄ =±cτ̄
1
4 , via which the non-zero part of the solution above joins onto the

zero parts. The Barenblatt–Pattle solution has infinite gradient at x̄ =±cτ̄
1
4 and vanishes for

|x|>cτ̄
1
4 , but the original differential equation for u contains a linear term and its solution

is strictly positive for positive initial data. The discrepancy is resolved as in a similar prob-
lem from a model of semiconductor fabrication [14] by introducing a further inner layer near
(say) x̄ = s̄(τ̄ )= cτ̄

1
4 in which x̄ = s̄(τ̄ )+ εX, u= ε

1
2 U , to find that

ε
1
2 Uτ̄ − ṡUX =

(
U3 + (

√
2/β)U2 + 1

2
U

)

XX

,

with U → 0 as X → +∞ and matching with the Barenblatt–Pattle solution as X → −∞. To
leading order the solution is the travelling wave U(X, τ̄ )=U0(X) where

ṡ
dU0

dX
+ d2

dX2

(
U3

0 + (
√

2/β)U2
0 + 1

2
U0

)
=0,

so that integrating once and using the condition at X =∞ we have

ṡU0 + d
dX

(
U3

0 + (
√

2/β)U2
0 + 1

2
U0

)
=0.
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A second integration shows that

3
2
U2

0 + 2
√

2
β

U0 + 1
2

log U0 =−ṡ(X −X0),

where X0 is a centering constant which can only be determined at higher order. We therefore
have exponential decay in the solution as X →+∞, while matching as X →−∞ shows that

U0 ∼
(

−2
3
ṡX

) 1
2

,

which is indeed consistent with the expansion of the Barenblatt–Pattle solution near x =s(τ̄ )=
cτ̄

1
4 , and this completes the asymptotic analysis of this problem.

5. Fast mean-reverting volatility

Our final example of the applicability of boundary-layer techniques is in the analysis of fast-
mean-reverting stochastic volatility models [15]. In these models the volatility itself is assumed
to follow a stochastic process while the asset price is assumed to follow the lognormal process
as before. That is, we assume that

dSt

St

=µdt +σt dWt, dσt =Mt dt +�t dW̃t

where Mt and �t are the drift and volatility of the volatility and the instantaneous correla-
tion between the Brownian motions Wt and W̃t is denoted by ρ. A commonly used example
is the Heston model [16]. This is

d(σ 2
t )=−κ

(
σ 2

t −σ 2
∞
)

dt + θσt dW̃t ,

for constant κ, θ and σ∞; it will be noted that the volatility exhibits mean-reversion to the
long-term level σ∞. (Although the model is written in terms of the instantaneous variance
σ 2

t , it can be transformed into one for σt via the Itô formula.)
When using such a model, perfect hedging is no longer possible and there is no unique

pricing measure. Instead, a standard analysis shows that there is a market price of volatility
risk, denoted by λ (which may be a function of any of S, σ and t) and pricing is done with
respect to the measure associated with the processes

dSt

St

= r dt +σt dWt, dσt = (Mt −λ�t)dt +�t dW̃t .

In effect, the market price of volatility risk represents the extra return required by the market
for taking on this (untradable) risk. A standard analysis then shows that the price V (S, σ, t),
which now depends on the instantaneous volatility σ as well as the spot price and time, sat-
isfies the backward parabolic equation

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ρSσ�

∂2V

∂S∂σ
+ 1

2
�2 ∂2V

∂σ 2
+ rS

∂V

∂S
+ (M −λ�)

∂V

∂σ
− rV =0,

which evidently contains the Black–Scholes equation as a special case.
We assume for simplicity (as is reasonable in practice) that the drift and volatility of the

volatility are functions only of σ , not of S or t . Let us consider the commonly occurring sit-
uation in which the volatility process is fast mean-reverting, in which the timescale for mean-
reversion is much shorter than that for the evolution of the asset price, their ratio ε being
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small.3 (In the Heston model above, this ratio is σ 2∞/κ.) Then Mt and �t are written

Mt = mt

ε
, �t = ςt

ε1/2
;

the relative sizes of these coefficients are chosen so that σt has a nontrivial invariant distribu-
tion

lim
t→∞p(σt , t |σ0,0)

where p(σt , t |σ0,0) is the transition density function for σt starting from σ0 at time zero,
which satisfies the forward Kolmogorov equation

∂p

∂t
= ∂

∂σ

(
1
2
�2 ∂p

∂σ

)
− ∂

∂σ
(Mp) .

We denote this time-independent invariant distribution by p∞(σ ).
With these assumptions the pricing equation becomes

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ ρς

ε
1
2

σS
∂2V

∂S∂σ
+ 1

2
ς2

ε

∂2V

∂σ 2
+ rS

∂V

∂S
+
(

m

ε
− λς

ε
1
2

)
∂V

∂σ
− rV =0.

It is possible to construct asymptotic approximations to the solutions of this equation,
valid as ε → 0, and this approach was pioneered by Fouque, Papanicolaou and Sircar; it
is summarised in their book [15]. They construct approximations correct to O(ε

1
2 ) which

are valid everywhere except in a boundary layer near expiry. In later work, Rasmussen and
Wilmott [18] extended the outer expansion to O(ε). However, the solution to this order con-
tains an arbitrary function which can only be determined by a boundary layer analysis which
they do not carry out, and this gap is filled in the current paper. Our analysis parallels that
of [17] who analysed products whose payoff depends on some measure of the realised volatil-
ity and who also analysed the boundary layer, although they did not construct as many terms
as are needed for the accuracy we now achieve. In related work, [19,20] consider the question
of convergence of the asymptotic series to the exact solution, and derive formulas similar to
ours, although they do not exploit the boundary-layer structure. The work in [20], in particu-
lar, was carried out simultaneously with ours although independently of it, and derives similar
formulas in a rather different setting. It is a pleasure to acknowledge helpful comments from
one of the authors of this paper.

5.1. The outer expansion

We begin with the outer expansion. We write the fast mean-reverting pricing equation in the
form

(
1
ε
L0 + 1

ε1/2
L 1

2
+L1

)
V =0

where

L0 = 1
2
ς2 ∂2

∂σ 2
+m

∂

∂σ
, L 1

2
=ρςσS

∂2

∂S∂σ
−λς

∂

∂σ
, L1 = ∂

∂t
+ 1

2
σ 2S2 ∂2

∂S2
+ rS

∂

∂S
− r;

3We use ε rather than ε2 (which would have been consistent with the usage of Section 3) in confor-
mity with existing literature, especially [15,17]. Note also that, for the same reason, we do not make
the pricing equation dimensionless. In this problem, there is little advantage to be gained by so doing.
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note that L1 is the Black–Scholes operator with volatility σ . Because L0 is the generator of
the backward Kolmogorov equation for σt , its adjoint L∗

0 is the generator of the forward
equation and so p∞(σ ) satisfies

L∗
0p∞ = ∂2

∂σ 2

(
1
2
ς2p∞

)
− ∂

∂σ
(mp∞)=0.

Assuming that ς2, m are such that p∞ exists, it is then proportional to

e−2
∫ σ

m(s)/ς2(s)ds/ς2(σ ).

The standard integration-by-parts identity

〈L0u, v〉=−〈u,L∗
0v〉

for suitable functions u and v, where 〈 · , · 〉 is the usual inner product over 0 < σ < ∞, will
prove useful.

We now expand

V (S, σ, t)∼V0(S, σ, t)+ ε
1
2 V 1

2
(S, σ, t)+ εV1(S, σ, t)+ ε

3
2 V 3

2
(S, σ, t)+ ε2V2(S, σ, t)+· · ·

and substitute into the pricing equation. Equating coefficients of powers of ε, we obtain in
increasing order of the power the equations

L0V0 =0, L0V 1
2
+L 1

2
V0 =0, L0V1 +L 1

2
V 1

2
+L1V0 =0,

L0V 3
2
+L 1

2
V1 +L1V 1

2
=0, L0V2 +L 1

2
V 3

2
+L1V1 =0.

At lowest order, we have L0V0 =0 and so V0 is a function V0(S, t) of S and t alone, since L0

consists only of σ -derivatives (the particular solutions that depend on σ are ruled out by the
conditions at large and/or small S). However, V0 is as yet undetermined and this is the princi-
pal feature of the analysis. In approximating, we have replaced the non-degenerate stochastic
volatility differential operator by the degenerate operator L0 which has no S or t derivatives.4

In consequence, the solution contains eigenfunctions (of which V0(S, t) is one) which can only
be determined by application of the Fredholm Alternative at higher order.

As V0 is a function of (S, t) alone, we have L 1
2
V0 = 0 and so V 1

2
is also a function, also

as yet unknown, of (S, t) alone, V 1
2
(S, t). Thus L 1

2
V 1

2
=0 and so we have

L0V1 =−L1V0.

Because the operator L0 is degenerate, by the Fredholm Alternative this equation only has
solutions if the right-hand-side is orthogonal to the relevant eigenfunction of L∗

0, namely
p∞. Thus, 〈L1V0, p∞〉 = 0; carrying out the integration, bearing in mind that the only
σ -dependence is in the volatility coefficient σ 2, we find that

L1V0 =〈L1V0, p∞〉= ∂V0

∂t
+ 1

2
σ 2S2 ∂2V0

∂S2
+ rS

∂V0

∂S
− rV0 =0,

where σ 2 = 〈σ 2, p∞〉 = ∫∞
0 σ 2p∞(σ )dσ (the notation σ 2 thus represents the average of σ 2

with respect to the invariant distribution p∞). This is the Black–Scholes equation with aver-

aged volatility
(
σ 2
)1/2

. The solution can be calculated by standard Black–Scholes techniques

4A similar situation occurs when, in a classical ‘lubrication theory’ analysis in a long thin domain, an
elliptic operator is replaced by a parabolic one [21].
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once a suitable final value is given. As we show below, this value is the payoff P(S), and so
V0(S, σ, t)=V0(S, t) is the Black–Scholes value of the option with constant volatility equal to
the square root of the stationary mean of the variance. This is intuitively reasonable in view
of the fact (see [5]) that if the volatility in a Black–Scholes equation is a given determinis-
tic function σ(t) of time, the option value can be calculated by replacing σ in the relevant
constant-volatility formula by

(
1

T − t

∫ T

t

σ 2(s)ds

) 1
2

,

so that we have, in effect, an application of the law of large numbers.
We now calculate V1. As L1V0 =0, we have by subtraction

L1V0 =L1V0 −L1V0 = 1
2
(σ 2 −σ 2)S2 ∂2V0

∂S2
,

thereby replacing the majority of the source terms in L0V1, leaving

L0V1 = 1
2
(σ 2 −σ 2)S2 ∂2V0

∂S2
.

The solution of this equation has the form

V1(S, σ, t)=g1(σ )S2 ∂2V0

∂S2
+V1(S, t)

where V1(S, t) is another eigenfunction of L0 which can only be determined by a solvability
condition at the next order; g1(σ ) satisfies

1
2
ς2(σ )

d2g1

dσ 2
+m(σ)

dg1

dσ
= 1

2
(σ 2 −σ 2),

and can be written in integral form (one of the ‘complementary solutions’ is a constant and
can be absorbed into V1(S, t), and the other is unbounded at infinity).

Although we have calculated V0, at this stage V 1
2

and V1 are still undetermined to within
an eigenfunction, and furthermore V1 depends explicitly on σ , which is not consistent with
a σ -independent payoff P(S). We deal with the former difficulty by going to higher order in
the expansion, and the latter by a boundary layer analysis.

Before proceeding further, we outline the pattern followed by successive iterations of
the solution procedure. We first solve equation n, namely L0Vn = −L 1

2
V

n− 1
2

− L1Vn−1 for
Vn(S, σ, t) (the right-hand side is assumed known from earlier stages), finding a particular
solution vn(S, σ, t) and an eigenfunction Vn(S, t) (for the case n=0 dealt with above, the for-
mer is zero and the latter is V0(S, t)). We repeat this process for V

n+ 1
2
, obtaining a further

particular solution v
n+ 1

2
and a further eigensolution V

n+ 1
2

(note that the eigensolution Vn is
annihilated by L0). Finally we substitute the functions just found into the right-hand-side of
the equation for Vn+1, namely L0Vn+1 = −L 1

2
V

n+ 1
2
− L1V n; again the eigenfunction V

n+ 1
2

is
annihilated, so the right-hand-side is known in terms of the particular solutions just found.
We can now apply the solvability condition 〈L0Vn+1, p∞〉 = 0 for existence of a solution to
obtain an equation from which the eigenfunction Vn(S, t) can, in principle and given appro-
priate terminal conditions, be found; this equation is

L1Vn =−L 1
2
v
n+ 1

2
−L1vn.
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Having dealt with n = 0 above, we now apply this procedure to the case n = 1
2 . We have

already found V 1
2
(S, σ, t) and V1(S, σ, t) up to eigenfunctions, so we need only apply the solv-

ability condition to the equation L0V 3
2
=−L 1

2
V1 −L1V 1

2
, noting that L 1

2
V1 =0. This gives

L1V 1
2
=−ρςσg′

1S
∂

∂S

(

S2 ∂2V0

∂S2

)

+λςg′
1S

2 ∂2V0

∂S2
,

where g′
1 =dg1/dσ . Using a manoeuvre similar to that employed for the heat equation in Sec-

tion 3, and assuming pro tem that the correct final condition (from matching) is V 1
2
(S, T )=0,

we find

V 1
2
(S, σ, t)= (T − t)

(

A 1
2 ,1S

2 ∂2V0

∂S2
+A 1

2 ,2S
∂

S

(

S2 ∂2V0

∂S2

))

,

where V0 is already known and A 1
2 ,1 =λςg′

1, A 1
2 ,2 =−ρςσg′

1 (as noted earlier, V 1
2

is indepen-
dent of σ ). This result, and elaborations thereof, is an important practical consequence of the
method since, as described in [15], it allows calibration of the three constants σ 2, ρςσg′

1 and
λςg′

1 to market prices of options (as represented by an implied volatility surface) in a simple
manner: the key point is that only these directly deducible constants are needed, rather than
the unobservable functions M(σ, t) and �(σ, t).

We need to carry out one more iteration. For ease of notation, we set

D =S
∂

∂S
,

equivalent to using a logarithmic price variable as in [20]. We first calculate

L0V 3
2
=
[
ςg′

1(λ−ρσD)+ 1
2

(
σ 2 −σ 2

)
(T − t)

(
A 1

2 ,1 +A 1
2 ,2D

)
(D2 −D)

−A 1
2 ,1 −A 1

2 ,2D
]

(D2 −D)V0

From this, we find V 3
2

in the form

V 3
2
(S, σ, t)=

[
g2(σ )+g3(σ )D +g1(σ )(T − t)

(
A 1

2 ,1 +A 1
2 ,2D

)
(D2 −D)

]
(D2 −D)V0

where g2(σ ) and g3(σ ) satisfy the same equation as g1(σ ) but with the relevant inhomoge-
neous terms taken from the equation for V 3

2
; that is, for g2(σ ) the inhomogeneous term is

λςg′
1(σ ) − A 1

2 ,1, and for g2(σ ) it is −ρσςg′
1(σ ) − A 1

2 ,2 (recall that ρ, λ and ς may depend

on σ ). Then, the solvability condition for V2, applied to the equation L0V2 =−L 1
2
V 3

2
−L1V1,

gives, after some calculation,

L1V1 =
[
(A1,1 +A1,2D)D +(T − t)

(
A 1

2 ,1 +A 1
2 ,2D(D2 −D)

)(
A 1

2 ,1 +A 1
2 ,2D

)]
(D2 −D)V0,

where the new constant coefficients are

A1,1 =ςg′
2(σ )(λ−ρσ), A1,2 =ςg′

3(σ )(λ−ρσ).

The relevant particular solution with zero payoff condition is

−
[
(T − t)(A1,1+A1,2D)D+1

2
(T − t)2

(
A 1

2 ,1 +A 1
2 ,2D(D2 −D)

)(
A 1

2 ,1+A 1
2 ,2D

)]
(D2 −D)V0;

however, we leave open the possibility of adding a further solution V ′
1(S, t) if the effective pay-

off, determined by matching into the boundary layer, dictates that we should do so. Likewise,
the σ -dependence of the solution can only be resolved by matching.



400 S. Howison

5.2. Boundary-layer analysis

We introduce a boundary layer in t near t =T , of size O(ε), defining the inner time variable
τ via

t =T + ετ, τ <0,

so that the pricing equation for Ṽ (S, σ, τ )=V (S, σ, t) is

1
ε

∂V

∂τ
+ 1

2
σ 2S2 ∂2V

∂S2
+ ρς

ε
1
2

σS
∂2V

∂S∂σ
+ 1

2
ς2

ε

∂2V

∂σ 2
+ rS

∂V

∂S
+
(

m

ε
− λς

ε
1
2

)
∂V

∂σ
− rV =0.

We write this as
(

1
ε
L̃0 + 1

ε1/2
L̃ 1

2
+ L̃1

)
Ṽ =0,

where

L̃0 = ∂

∂τ
+L0 = ∂

∂τ
+ 1

2
ς2 ∂2

∂σ 2
+m

∂

∂σ
, L̃ 1

2
=L 1

2
=ρςσS

∂2

∂S∂σ
−λς

∂

∂σ
,

L̃1 = 1
2
σ 2S2 ∂2

∂S2
+ rS

∂

∂S
− r,

(note that L̃0, unlike L0, contains the time derivative ∂/∂τ ; this effectively removes the degen-
eracy that made the outer expansion so complicated) and we expand

Ṽ ∼ Ṽ0 + ε1/2Ṽ 1
2
+ εṼ1 +· · · .

At leading order we have the one-term inner solution which satisfies

L̃0Ṽ0 =0, Ṽ0(S, σ,0)=P(S),

the solution is

Ṽ0(S, σ, τ )=P(S),

and it matches automatically with the one-term outer solution V0(S, t) as t →T , τ →−∞.
At the next order, we have

L̃0Ṽ1 =−L1Ṽ0 =0, Ṽ1(S, σ,0)=0;

the solution is Ṽ 1
2
=0, and this is consistent with matching with the two-term outer expansion

V0 + ε1/2V 1
2
, since in inner variables the T − t in V 1

2
means that this term only contributes

O(ε3/2) to the inner expansion of the outer solution. We now see the correctness of ignoring
the possible added eigenfunction at this order in the outer expansion.

At the next order, we have

L̃0Ṽ1 =−L̃1Ṽ0 =−L̃1P, Ṽ1(S, σ,0)=0,

which, noting that ∂P/∂τ =0, can be written as

∂Ṽ1

∂τ
+L0Ṽ1 = 1

2

(
σ 2 −σ 2

)
S2 ∂2P

∂S2
−L1P, Ṽ1(S, σ,0)=0.
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We now need the limiting behaviour of the solution of this equation as τ →−∞ in order
to match with the three-term outer solution. A particular solution is

Ṽ1
∞ =g1(σ )S2 ∂2P

∂S2
− τL1P + Ṽ1(S)

where Ṽ1(S) is arbitrary, and this is in fact the correct form for the asymptotic behaviour of
Ṽ1(S, σ, τ ) as τ →−∞. To see this, we first note that

〈L̃0Ṽ1, p∞〉=〈∂Ṽ1

∂τ
+L0Ṽ1, p∞〉=〈∂Ṽ1

∂τ
,p∞〉,

since 〈L0Ṽ1, p∞〉=0. Furthermore,

∂

∂τ
〈Ṽ1, p∞〉=〈∂Ṽ1

∂τ
,p∞〉=−〈L1P,p∞〉=−L1P,

and so, integrating and using Ṽ1(S, σ,0)=0,

〈Ṽ1, p∞〉=−τL1P.

However, using the solution found for Ṽ1, we also have that

〈Ṽ ∞
1 , p∞〉=−τL1P +g1(σ )S2 ∂2P

∂S2
+ Ṽ1(S).

Comparing these two expressions for the inner product, we see that

Ṽ1(S)=−g1(σ )S2 ∂2P

∂S2
.

Thus, as τ →−∞,

V1 ∼ Ṽ ∞
1 =

(
g1(σ )−g1(σ )

)
S2 ∂2P

∂S2
− τL1P,

since what is left after subtracting the particular solution, Ṽ1 − Ṽ ∞
1 , satisfies the homogeneous

version of the parabolic equation, has initial data that vanishes at large and small σ , and
therefore vanishes as τ → −∞. Indeed, as m and ς are independent of S, this is the exact
solution for V1, although it would not be if the payoff were to depend on σ .

5.3. Matching

We can now complete the matching. From the outer expansion, written in inner variables, we
have

V0(S, σ, T + ετ)+ ε
1
2 V 1

2
(S, σ, T + ετ)+ εV1(S, σ, T + ετ)

∼V0(S, σ, T )+ ε
1
2 V 1

2
(S, σ, T )+ ε

(
τ

∂V0

∂t
(S, σ, T )+V1(S, σ, T )

)

=V0(S, T )+ ε

(
τ

∂V0

∂t
(S, T )+g1(σ )S2V0SS +V ′

1(S, T )

)

=P(S)+ ε
(
−τL1P(S)+g1(σ )S2V0SS +V ′

1(S, T )
)

;

because, from one-term matching, V0(S, T )=P(S) and L1V0 = 0, we have ∂V0/∂t =−L1P , a
result used in deriving the last line of this equation. This is the three-term outer expansion,
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in inner variables; note that the particular solutions in V 1
2

and V1 that are multiplied by T − t

do not contribute to it.
As demonstrated in Section 5.2, the large-τ behaviour of the three-term inner expansion

is

P(S, I )+ ε

(

−τL1P +
(
g1(σ )−g1(σ )

)
S2 ∂2P

∂S2

)

.

Matching these two expressions, the missing final condition for V ′
1(S, t) is

V ′
1(S, T )=−g1(σ )S2 ∂2P

∂S2
.

Hence, as S2V0SS is itself a solution of L1V =0, we have

V ′
1(S, t)=−g1(σ )S2 ∂2V0

∂S2
,

and the complete outer expansion to three terms is

V (S, σ, t)∼V0(S, t)+ ε
1
2 (T − t)

(
A 1

2 ,1 +A 1
2 ,2D

)
(D2 −D)V0 + ε

[
g1(σ )−g1(σ )

−(T − t)(A1,1 +A1,2D)D−1
2
(T − t)2

(
A 1

2 ,1 +A 1
2 ,2D(D2 −D)

)(
A 1

2 ,1+A 1
2 ,2D

)]
(D2 −D)V0;

again, we recall that D =S∂ /∂S.
This result can be used to refine the O(ε

1
2 ) calibration [15] to market data; it should be

noted that at O(ε) this involves the determination not only of the two new constants A1,1

and A1,2 but also of the function g1(σ ) − g1(σ ). In practice, the contribution from the lat-
ter is likely to be relatively small as the average of g1(σ ) is subtracted from g1(σ ) itself. The
calibration is described in detail in [20].

The analysis just presented must be modified if the payoff has a gradient discontinuity (or
a jump), as then S2V0SS is large near expiry for certain values of S; an example would be a
call option with large Gamma near the strike K. This case can be treated by invoking a fur-
ther inner region, in which S =K(1+ε

1
2 x), t =T +ετ , in which the leading order equation to

be solved for v(x, σ, τ )=V (S, σ, t) is

∂v

∂τ
+ 1

2
σ 2 ∂2v

∂x2
+ 1

2
ς2 ∂2v

∂σ 2
+m

∂v

∂σ
=0

with v(x, σ,0) = max(x,0). Unfortunately the coupling via the coefficient of ∂2v/∂x2 means
that explicit progress is unlikely for this problem, although its very short-time behaviour will
be as in Section 3.

6. Discussion

We have discussed a number of applications of the method of matched asymptotic expansions
in finance, focusing on European vanilla options in several models. It is clear that the method
can be applied in a much wider variety of situations, and although few of these opportuni-
ties have yet been exploited, there is corresponding work on American put options close to
expiry where both conventional asymptotics and ray methods have been applied (see the
recent paper [22] and references therein) and on discretely sampled barrier options [23]. But
perhaps the most intriguing possibility is that of translating the techniques of matched asymp-
totic expansions so that they apply directly to the stochastic processes, rather than going via
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the partial differential equation for the probability density. For example, in Section 5, we
introduced the process

dσt =−m

ε
dt + ς

ε
1
2

dWt.

for a fast mean-reverting volatility. Given the starting value σ0 of σt , it is intuitively clear that
over a timescale of O(ε) the exponential decay associated with the mean reversion acts to
‘erase’ the initial condition and that for longer timescales, say t =O(1), all that we can say at
time t is that σt is sampled from its stationary distribution p∞(·); the ‘memory’ of the initial
condition is then O(e−mt/ε), i.e. exponentially small. Similarly, the values of σt at two times t1

and t2 separated by O(1) are effectively independent samples from p∞ even though they are
linked by a sample path.

To make this concept more precise, we first need to extend the traditional definition of an
asymptotic expansion, which we do in conformity with the standard weak (in distribution)
and strong (pathwise) convergence for stochastic processes. We propose the definition that a
stochastic process Xε

t depending on a parameter ε has the expansion

Xε
t

P∼X
(0)
t + εX

(1)
t + ε2X

(2)
t +· · · as ε →0

over a given time interval if, for each fixed t in this interval, one can find processes X
(0)
t , X

(1)
t ,

. . . such that, for each N , the error

1
εN

⎛

⎝Xε
t −

N∑

j=1

εjX
(j)
t

⎞

⎠

converges in probability to zero as ε →0. This is a pathwise asymptotic expansion in the sense
that the sample paths of the expansion converge to those of the target process Xε

t , and it cor-
responds to a conventional regular expansion. Likewise we propose that

Xε
t

D∼X
(0)
t + εX

(1)
t + ε2X

(2)
t +· · · as ε →0

if the same error converges to zero in distribution as ε →0, interpreted as

|F
S

(N)
t

−FXε
t
|/εN →0 as ε →0,

where S
(N)
t is the sum of the first N terms in the expansion and F is the cumulative density

function. We term this type of expansion distributional.
By way of example, consider the slowly mean-reverting Ornstein–Uhlenbeck (O–U) process

dXt =−εXt dt +dWt,

with the starting value X0 = x0 given. Posing a regular (pathwise) expansion as above, and
equating coefficients of powers of ε in the usual way, we find the set of equations

dX
(0)
t =dWt, X

(0)

0 =x0,

dX
(1)
t =−X

(0)
t dt, X

(1)

0 =0,

and so on; their solutions are

X
(0)
t =x0 +Wt, X

(1)
t =−x0t −

∫ t

0
Ws ds
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Figure 4. Numerical simulation, by explicit forward
scheme with timestep 0·01, of the O–U process
dXt = −εXt dt + dWt , ε = 0·05, and of the two-term
asymptotic approximation. Divergence clearly becomes
significant when εt =O(1).
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Figure 5. Difference between numerical simulations of
the nonlinear process dXt = −εX2

t dt + dWt , ε = 0·02
and ε =0·1, and of their two-term asymptotic approx-
imations. Divergence clearly becomes significant when
εt = O(1) and increases with ε. Explicit forward
scheme with timestep 0·004.

and these are in accordance with the exact solution, obtained with an integrating factor:

Xε
t =x0e−εt +

∫ t

0
e−ε(t−s)dWs =x0(1− εt)+

∫ t

0
(1− ε(t − s)) dWs +O(ε2)

=x0 +Wt + ε

(
−x0t − [(t − s)Ws ]t0 −

∫ t

0
Ws ds

)
+O(ε2);

in this calculation we have a conventional expansion in the second line, and we have inte-
grated by parts; the endpoint contributions vanish on using W0 =0. Of course, the same sam-
ple path for the Brownian motion must be used throughout. It should be noted that the
expansion is only valid for t �O(1/ε), as higher order terms become comparable with those
considered above when t =O(1/ε). A sample simulation is shown in Figure 4.

Although this example is trivial, the same technique can also be applied to problems such
as

dXε
t =−ε(Xε

t )
2dt +dWt, Xε

0 =x0,

for which the exact solution is less straightforward; however, taking x0 =0 for simplicity, suc-
cessive approximation readily gives

Xε
t

P∼Wt − ε

∫ t

0
W 2

s ds +O(ε2);

the last term can be integrated by parts to give

Xε
t

P∼Wt + ε

(
1
2
t2 − tW 2

t +2
∫ t

0
sWs dWs

)
+O(ε2).

A numerical simulation of the error is shown in Figure 5.
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For a simple example of an asymptotic approximation valid in distribution, we could con-
sider the O–U process

dXε
t =−1+ ε

ε
Xε

t dt + 1√
ε

dWt, Xε
0 =x0,

for which if t =O(1) the distribution is approximately the stationary distribution of the leading-
order process

dX
(0)
t =−1

ε
X

(0)
t dt + 1√

ε
dWt,

all information about the initial value x0 (and hence about the path) being exponentially small
and hence invisible at this order. It can be seen for how long this information is significant
by making the time-change t = ετ , giving

dXε
τ =−(1+ ε)Xτ dτ +dWτ

(note the effect of changing the timescale on the Brownian motion W ), and a regular expan-
sion can be made, although as noted above it becomes invalid for τ =O(1/ε), at which time
the initial information has effectively been forgotten.

It remains to consider the analogue of conventional matching. Bearing in mind the exam-
ples above, we formulate a tentative conjecture: matching à la Van Dyke corresponds to moving
from a pathwise expansion to a distributional one. That is, specific information about the path
is lost by a matching process, but distributional information is preserved. Thus, in the O–U
example just cited, the pathwise information in the ‘inner layer’ t =O(ε) is lost, but the limiting
distribution for large τ of the ‘inner’ process Xτ is, to leading order, identical with the leading-
order ‘outer’ stationary distribution. Whether this formulation is reasonable and the conjecture
correct and, if so, whether the idea can give new information about other problems such as
discretely sampled barrier options or stochastic processes other than Wiener processes, are all
interesting questions for future research.

7. Conclusion

This paper deals with a small number of the many possible applications of matched asymp-
totic expansions in finance. As mentioned earlier, this is just one example of the kind of
technology transfer that has enabled the subject of mathematical finance to develop from its
infancy. It would be fair to say that, in the early days of the subject, this transfer was mostly
from established areas of mathematics (probability, partial differential equations) to finance,
with the primary novelty being in the modelling of financial contracts. Now, however, one
may reasonably say that the level of mathematical difficulty inherent in financial models has
risen to match that of the modelling: in a sense, the easy mathematical pickings are over. Cur-
rent models are characterised, for example, by complexity, as they attempt to deal with more
realistic problems than single options; by mathematical technicalities and difficulties such as
those that arise when Levy processes are used to model asset prices, or when inverse prob-
lems are solved to determine model parameters, or when nonlinearities arise as in models of
illiquid markets; by large scale of computation, as banks may have to value thousands of con-
tracts to determine their overall mark-to-market position; and most of all by the difficulties
of modelling an ever-changing market environment. Although the subject is ‘mature’, it still
presents many challenges to the mathematician and financial engineer alike.
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